Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card.

نویسندگان

  • Christopher A Werley
  • Stephanie M Teo
  • Keith A Nelson
چکیده

A photodiode and data acquisition card whose sampling clock is synchronized to the repetition rate of a laser are used to measure the energy of each laser pulse. Simple analysis of the data yields the noise spectrum from very low frequencies up to half the repetition rate and quantifies the pulse energy distribution. When two photodiodes for balanced detection are used in combination with an optical modulator, the technique is capable of detecting very weak pump-probe signals (ΔI/I(0) ~ 10(-5) at 1 kHz), with a sensitivity that is competitive with a lock-in amplifier. Detection with the data acquisition card is versatile and offers many advantages including full quantification of noise during each stage of signal processing, arbitrary digital filtering in silico after data collection is complete, direct readout of percent signal modulation, and easy adaptation for fast scanning of delay between pump and probe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The advantage of using a diode laser instead of a Q-switched laser in photoacoustic imaging of tissues

Photoacoustic (PA) imaging of biological tissues using laser diodes instead of conventional Q switched pulsed systems provides an attractive alternative for biomedical applications. However, the relatively low energy of laser diodes operating in the pulsed regime, results in generation of very weak acoustic waves, and low signal-to-noise ratio (SNR) of the detected signals. This problem can be ...

متن کامل

Preliminary Result of Photon Counting Acquisition Scheme for Laser Pump/ X-ray Probe Experiments*

R&D project has been initiated for a proposed ultralow emittance (~50pm.rad) synchrotron light source built in Beijing. The R&D includes the development of high repetition rate laser pump/X-ray probe for ultrafast dynamics detection in future source. In a typical laser pump/X-ray probe measurement, the X-ray pulse follows a laser pulse in adjustable delay. We are interested in the difference be...

متن کامل

Pulsed pump in optical displacement transducer for experiments with probe bodies

The sensitivity of the displacement transducer pumped with a train of high-intensity laser pulses is estimated. Due to the multicomponent character of the pump a consideration of transformations of the signal and the noises between optical modes plays an important role in estimation of the potential sensitivity. An expression for the minimal detectable external classical force resembles those f...

متن کامل

Experimental Signature of Registration Noise in Pulsed Terahertz Systems

This letter reports results from time domain measurements in a terahertz pulsed imaging system to demonstrate that a mechanical resetting mechanism in the pump-probe delay stage results in a small but resolvable noise signal. In the setup described here, this effect dominates all other sources of noise such as the background Johnson noise or shot noise, and can hence be isolated and analysed in...

متن کامل

Enhanced Modulation and Noise Characteristics in 1.55 µm QD Lasers using Additional Optical Pumping

The modulation response, relative intensity noise (RIN) and frequency noise (FN) characteristics of quantum dot (QD) lasers are investigated theoretically in the presence of an external optical beam. Using small signal analysis of the rate equations for carriers and photons, it is demonstrated that by injecting excess carriers into the QDs excited state through optical pumping, the modulation r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 82 12  شماره 

صفحات  -

تاریخ انتشار 2011